

DEPARTMENT OF ECOLOC

7272 Cleanwater I ane, Olympia, Washington 38:04

WA-25-5010

ددي دي دي

MEMORANDUM December 11, 1980

To:

George Houck

From:

Bill Yake By-

Subject: Weyerhaeuser, Longview - 9/23/80 · Class II Inspection

Introduction:

On September 23 and 24, 1980 a Class II inspection was conducted at the Weyerhaeuser facility at Longview. Personnel involved included Sharon Chase and Bill Yake (Department of Ecology [DOE], Water and Wastewater Monitoring Section), Roger Stanley (DOE, Industrial Section), and Jim Yount (Weyerhaeuser, Water and Wastewater Project Engineer).

The Weyerhaeuser facility is a Kraft and thermo-mechanical pulp/paperboard mill which includes a chlor-alkali plant, a water treatment plant, and a small sanitary wastewater treatment plant. Major wastewater treatment facilities include an activated sludge (deep tank) system for the pulping process wastewaters and a small lagoon for treatment of sanitary wastes. Figure 1 is a simplified schematic of wastewater units and flows at the Weyerhaeuser facility.

Wastewaters are discharged to the Columbia River (Segment 26-00-01) 2.1 miles downstream from its confluence with the Cowlitz River.

Determination of compliance status was based on the pertinent portions of National Pollution Discharge Elimination System (NPDES) waste discharge permit WA 000012-4 (September 29 revision). Roger Stanley reviewed laboratory procedures.

Sampling Procedure:

Automatic composite samplers were used to obtain 24-hour composite samples at five locations (see Figure 1 and Table 6). Grab composites were obtained at three locations (see Figure 1 and Table 1) while portions of Weyerhaeuser composite samples were obtained for the number one secondary clarifier effluent and filter plant waste flow. The flows and DOE laboratory and field test results are presented in Table 2. Samples were split with Weyerhaeuser for both analysis at the Longview plant laboratory and at their headquarters' research and development (R & D) laboratory. These results are given in Tables 3 and 4, respectively. Flows were, in most cases, obtained from Weyerhaeuser flow totalizers. The flow meter at the sanitary plant appeared to be out of calibration

Memo to George Houck Weyerhaeuser, Longview - 9/23/80 - Class II Inspection Page Two

based on an instantaneous check of head height behind the V-notch weir. Because the strip chart indicated a relatively constant effluent flow, the totalized 24-hour flow from the ITT meter was corrected by multiplying it by the instantaneous flow determined by head measurement and dividing by the flow simultaneously recorded on the flow meter strip chart. The flow reported in Table 2 reflects this correction. Later checks by Weyco personnel confirmed the flow meter inaccuracy and it has been corrected. Although the Parshall flume at the primary clarifier influent has been recently calibrated, it is prone to surging. Widely fluctuating flows and the lack of a long, straight approach may compromise the accuracy of this device.

Weyco samplers are not iced (a problem addressed in the last Class II) although they are collected each shift (8 hours) and stored in a refrigerator.

A sample of dried secondary sludge was obtained for metals analyses. These samples were split and also analyzed at Weyco R & D labs. The results are given in Table 5.

Results:

Analytical results are compared against permit requirements in Tables 2, 3, and 4. These results and comparisons are summarized in Table 6. In general, the facility was easily meeting permit limitations. Two exceptions to this compliance were the flows for cooling water (8.97 MGD recorded; daily average permit limitation 1.0 MGD) and sanitary effluent (0.348 MGD recorded; daily average permit limitation 0.3 MGD).

In the case of the cooling water (003) the plant has evidently separated "clean water" flows from the pulping wastewater flow (001 & 002) and routed them to the cooling water. This re-routing evidently has not been reflected in the permit either as a decrease in permitted 001 and 002 flows, or as an increase in permitted 003 flows.

The sanitary plant wastewater strength is very weak (note nutrient concentrations in effluent, Table 2). It appears that the plant is receiving substantial flow from sources not containing human wastes.

One constituent attained only borderline compliance. This constituent was the total chlorine residual (TCR) in the sanitary effluent. The permit allows 0.5 to 5.0 mg TCR/1. Two on-site analyses revealed 4.5 and 5.0 mg/l. There is no reason to keep chlorine levels this high. The chlorine contact structure is well designed and concentrations of 1.0 mg TCR/l should be more than sufficient to provide adequate disinfection. Field analyses of samples of Columbia River water obtained near (5 to 25 yards) the sanitary outfall revealed concentrations of 0.25 to 4.5 mg TCR/l. The federal criterion established for the protection of aquatic life is .002 mg TCR/l. This problem was noted in the last Class II report (1978) and has not been addressed.

Memo to George Houck Weyerhaeuser, Longview - 9/23/80 - Class II Inspection Page Three

Two effluent streams were not under permit conditions at the time of the inspection; however, results of samples from these streams appear to contain some important information. The results for the chlor/alkali discharge and the water plant waste flow are therefore discussed below.

The comparison of laboratory results and permit limitations (effective September 29, 1980) for the chlor/alkali plant are given below:

Table 8. Chlor/Alkali Results

	DOE Results	Weyco Results	Sept. 29, 1980 Daily Average Permit Limitations
Flow (MGD)		3.1	
TSS (mg/1)	< 1	enic save	tolen GMED*
(lbs/day)	<26	VICES BERRY	189
Lead (mg/l)	<.08	<.01	. Die ein
(lbs/day)	<2.07	<.26	1.5
Mercury (mg/l)	.0006	E/20 4/500	KINS MHC
(lbs/day)	.016	CTO 405	.083
Total Chlorine Residual (mg/l)	1.0	COM 10W	1.5
pH (S.U.)	6.5	suid: seen	**************************************
Specific Conductivity (µmhos/cm)	194	tou and	
Turbidity	1	ens ens	4MA 5607
Silver (mg/l)	<.01	Kind, While	Non-Side
Cadmium (mg/1)	<.01	Em 100	CNA MANA
Chromium (mg/l)	<.01	CTD NO.	the trip
Copper (mg/1)	<.01	CSC MC*	glas lenk
Iron (mg/l)	.07	exa ter	gas shell
Manganese (mg/l)	. 21	F256 SeF?	CAD WILE
Nickel (mg/l)	<.07	ECON GROCE	KCND MWCT
Zinc (mg/l)	.01		

This discharge was meeting all current permit limitations. Only the chlorine residual concentration (1.0 mg/l) approached permit levels (1.5 mg/l).

Although the wastewater flow from the water treatment plant is not currently under permit limitations, the effluent suspended solids loading from this source (20,500 lbs/day) was about 1-1/2 times the loading from all other plant sources combined. The suspended solids concentration in the water plant waste flow sample was 360 mg/l.

These values were characterized by Jim Yount as "not unusual." They should, however, be considered in light of the recent St. Helen's eruption and the design and operation of the water treatment plant. Water

Memo to George Houck Weyerhaeuser, Longview - 9/23/80 - Class II Inspection Page Four

is drawn from the north side of the Columbia River below its confluence with the Cowlitz River. Suspended solids concentrations in the Cowlitz River have been generally high since the May 18 eruption and subsequent dredging activities in the Cowlitz. Although this would result in elevated intake solids, it is probable that during the inspection the intake of volcanic solids was minimal due to low flow in the Cowlitz.

Treatment at the water plant consists of clarification in settling basins, followed by alum addition and sand filtration. Wastewater from the plant consists of filter backwash and solids removal from the clarifiers. Solids discharged from the plant can vary substantially from day to day because three of the five clarifiers are flushed of solids infrequently while solids discharge from the sand filters and other two clarifiers proceeds on a more or less continuous basis.

Because both alum and essentially all intake solids are eventually discharged to the wastewater stream, and because this wastewater flow is about 10 percent of the intake flow, one would expect a waste stream solids concentration at least 10 times the raw water suspended solids concentration.

Solids from three of the five clarifiers were not being discharged during the inspection. Because of this and the low Cowlitz River flow, the suspended solids load reported here in the water plant waste flow probably represents best-case, post-eruption conditions.

Comparision of Laboratory Results

Split samples were analyzed by DOE Tumwater, Wwyerhaeuser Longview, and Weyerhaeuser R & D laboratories. A summary of the comparisions of analyses for constituents addressed in the permit is shown in Table 7. Laboratory procedures were reviewed by Roger Stanley and are not addressed here.

Based on the comparison of split sample results, the Weyco, Longview lab appears to do an excellent job of anlays on BOD, TSS, and pH tests. The Weyco R & D lab did not fare well in the suspended solids and pH tests. Jim Yount noted that the two extreme TSS values reported by R & D were noted to be unusual but no further explanation was offered.

Conclusions:

1. Weyerhaeuser, Longview, was generally meeting permit limitations and split sample results indicate accurate analysis at the Longview laboratories.

Memo to George Houck Weyerhaeuser, Longview - 9/23/80 - Class II Inspection Page Five

- 2. The permit has not been updated to reflect the shift of flows from the treatment plant flow (001 and 002) to the cooling water discharge (003).
- 3. Maximum residual chlorine concentrations permitted in the sanitary effluent should be reduced. We believe that adequate disinfection can be achieved with 1.0 mg/l residual chlorine. Present concentrations (4.5 to 5.0 mg/l) are resulting in substantial excursions of federal receiving water criteria.
- 4. During the inspection the major source of effluent suspended solids loading was the water treatment waste flow. This stream accounted for about 60 percent of the total suspended solids discharged from the plant during this time period.

BY:cp

Attachments

FIGURE 1 From DiAGRAM - WEYERHAUSER, LONGUIEW

Table 1. Sampling Locations - Composite and Grab Composite

Sample/Rate	Date/Time In	Location
Primary Influent 250 ml/30 min.	9/23/80 - 1000	Downstream from Parshall flume, prior to primary clarifier inf.
Primary Effluent 250 m1/30 min.	9/23/80 - 0935	Outfall plunge pool, primary clarifier
A/C Sump 250 ml/30 min.	9/23/80 - 1130	From tap in A/C line, same as Weyco sample location
#1 Secondary Clar. Eff. 250 ml/30 min.	9/23/80 - 0910	Outfall of #1 secondary clar same as Weyco sampler location
<pre>#2 Secondary Clar. Eff. 250 ml/30 min.</pre>	9/23/80 - 0915	Outfall of #2 secondary clar same as Weyco sampler location
Cooling Water Grab composite	9/23/80 - grab comp.	Directly from B sump
Sanitary Effluent Grab composite	9/23/80 - grab comp.	From discharge end of chlorine con- tact chamber
Chlor. Alkali Effluent Grab composite	9/23/80 - Grab comp.	Tap in chlor/alkali discharge line
#1 Secondary Clar. Eff. Weyerhaeuser Sampler	9/24/80 - 8-hour comp. only w/Weyco sampler	Same as #1, secondary eff. above
Filter Plant Waste Flow Weyerhaeuser sampler	9/23/80 - Approx. 18 hr. comp. w/Weyco Sample	Fixed Weyco site in backwash dis- charge point
	Grab Samples and Field A	nalyses
Location	Date/Time	Analyses
#1 Sec. Clar. Eff.	9/23/80 - 0925	Fecal coliform, <u>Klebsiella</u> <u>sp</u> .
#2 Sec. Clar. Eff.	9/23/80 - 0925 9/24/08 - 0915	Fecal coliform, <u>Klebsiella sp</u> . Fecal coliform
Sanitary Effluent	9/23/80 - 1430	Fecal coliform, Total Cl ₂ res., pH, Cond., Dissolved oxygen
Primary Clarifier Inf.	9/23/80 - 1000 9/24/80 - 0950	pH, Cond. pH, Cond.
Primary Clar. Eff.	9/23/80 - 0935 9/24/80 - 0925	pH, Cond. pH, Cond.
A/C Sump	9/23/80 - 1130 9/24/80 - 1105	pH, Cond. pH, Cond.
#1 Sec. Clar. Eff.	9/23/80 - 0910 9/24/80 - 0900	pH, Cond., Dissolved oxygen pH, Cond., Dissolved oxygen
#2 Sec. Clar. Eff.	9/23/80 - 0915 9/24/80 - 0855	pH, Cond., Dissolved oxygen pH, Cond., Dissolved oxygen
Chlor/Alkali Eff.	9/23/80 - 1415	Temp., Total Chl. Res., pH
Filter Plant Waste Flow	9/23/80 - 1130	pH, Cond.
Cooling Water	9/23/80 - 1140	pH, Cond.
Sanitary Effluent		

Table 2. Comparison of DOE Results with NPDES Permit Limitations,

Flow (MGD) 22.92 (22.92) BOD5 (mg/l) 290 240 TSS (mg/l) 65 (lbs/day) 65 (lbs/day) 12,400 COD (mg/l) 720 670 Fecal Coliform (#/loo ml) 720 670 Klebsiella (#/loo ml) 9.7 9.9 For Conductivity 1,520 1,810 (umhos/cm) 1,900* 2,400*	(30.45) 170 43,200 58 14,700 940	(DOE)	(WEYCO)	Sec. Clar, (DOE)	001 and 002	001 and 002	Cooling Water	Cond. Daily Avg. 003	Sanitary Effluent	Daily Avg.	Chlor/ Alkali ¹ Effluent	Filter Plant Waste Flow
290 55,400 55,400 720 720 74* 6.5* 9.9**		26.33	# #	27.04	53,37	06	8.97(?)	0.	(.348) ²	6.0	m	6.84
orm 720) 720) 9.7 7.4* 6.5* 9.9**		15 3,290	20	13 2,930	6,220	28,000	1 1	Anthony and the second desired	ري ع.	30	⊽	5 G G
720 orm) 9.7 7.4* 6.5* 9.9** ivity 1,520		37 8,120	27	20 4,510	12,600	45,000	V	and a restaurance of the second s	29	30		360 20,500
5.7 7.4* 6.5* 1,900*		550	480	480					39		*	2 5
(S.U.) 9.7 7.4* 6.5* 9.9** (.umhos/cm) 1,900*		35 est.	- - - - -	10 est/<10	i s		I I		V	500		95 88
(S.U.) 9.7 7.4* 6.5* 9.9** Conductivity 1,520 (unhos/cm) 1,900*	ī	35 est.	\$ 8	-/0	t I	and the agent to the control of the	1		1 1			45 89
Conductivity 1,520 (umhos/cm) 1,900*	404;	0.00.7 .00.07 .00.4 .00.7	7.0	7.00°.7 	6.6-7.2	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	7,0%	6.0-8.5	တ လိ် ထို ထို		ى ئ	46.91
	4,280 4,650* 4,280*	3,170 3,150* 2,700* 3,200**	3,170	3,360 2,950* 2,770* 3,400**		ear medde, gelly greffigg spreference is slip all d	170 .152*		315*		194	182
		2,200	2,200	2,200			à			TOTAL STATE OF THE		. !
Turbidity (NTU) 360 120	30	40.	32	35			porce		o,	**************************************		140
Total Solids (mg/1) 1,600	3,100	2,200	2,100	2,200								9
TNVS (mg/1) 1,100	2,400	1,900	1,700	006"1								3
TSS (mg/l) 65	58	37	27	20			~		0,		7	360
TNVSS (mg/l) 16	~	~	~	V					n se sement me			3 8
NH ₃ -N (mg/1)	3	0.06	0.09	0.05					3,7			;
NO ₂ -N (mg/1)	1	<0.1	<0°,1	<0.1					<0,1			ii 3
NO3-N (mg/l)	î	<0.1	<0.1	<0.1			w :		0,16			ş 3
-PO _q -P (mg/l)	3	0.50	09.0	0,60					0.40			2 3
en e	\$	0,86	09.0	0,76			. 10 1141		0.			3
PBI (mg/1) 3,000 2,700	1,100	1,100	950	1,100			## 10 TO					8
Dis. Oxygen (mg/1)	1	* ~	3	0.4*					8.6			8
T. Chl. Resid	ë 9	3	ift, de	3 8 8 8	** • • • • • • • • • • • • • • • • • •	and the sifection of			4°.5°	, 5. . 5.	1.0*	\$ E
(30) (50)								22.2))	ن د د	
lemperature (c)		ep ep	4 4	88 t			***	• 1	-1	-	63.0	
Grab composite.					1	sample.						
^2Based on on-site measurement of head behind 45° V-notch weir. "<" = "less than"	d behind 45	5° V-notch	weir.	**Field Test	1	Composite sample.	Je.					

Table 3. Comparison of WEYCO Longview Laboratory Results with NPDES Permit Limitations.

	Primary Influent	Primary Effluent	A/C Sump	#1 Sec. Clar. (DOE)	#1 Sec. Clar. (WEYCO)	#2 Sec. Clar. (DOE)	001 and 002	Cond. Daily Avg. 001	Cooling Water	Permit Cond. Daily Avg.	Sanitary Effluent	Permit Cond. Daily Avg. 005	Filter Plant Waste Flow
Flow (MGD)	25.92	(22.92)	(30,45)	26.33	£ 1	27,04	53,37	06	8.97	1.0	(.405)*	0.30	6.84
BOD (mg/1) (1bs/day)	319 61,000	287 54,900	228 57.900	16 3,510	8 b	16 3,610	7,120	28,000	E L		23	30 75	8 B
TSS (mg/1) (1bs/day)	1,080 206,000	71	30 20,300	50 11,000	8 1	31 6,990	18,000		6 L		7.9	30 75	22,900
COD (mg/1)	685	741	096	513	456	456	ė e	6	6 8		t i		l'
pH (mg/l)	9,4	φ φ	4, 43	7.1	7,2	7.3	7.1-7.3	5.0-9.0	6.9	6.0-8.5	!	100 may	i i
Spac. Cond. (umhos/cm)	1,400	002"	100ءء	3,000	2,900	3,10,	73 88	8	30.	program and t	*	, 3	f: ee
TSS (mg/7)],08C	r '	0	20	φ «t	m		ŀ		MV sinkenA	Ø7 t :	30	401
TNVSS (mg/1)	486	Or f	. e		To the	0.	P	+ t			7.0	1	i e

*Flow meter subsequently found out of calibration - value probably too high, see Table 2.

Table 4. Comparison of Analytical Results - WEYCO Headquarters (R & D) Laboratory with NPDES Permit Limitations.

Filter Plant Waste Flow	.84		*800*	Đ.	8	ω.	150	1 1	200		į.	2,800*	•	ì	!	6 8	
				E		တ	_	+			, -	ഹ	•	•			
Permit Cond. Daily Avg.	(300)	30 75	3C - 75	1	500	Į.	8 8	1) 	ì	i i	1 f	1	3 8	t i	1	
San tary Effluent	(.405)**	3 E L	t #	6 E	- <2	į.	ŧ	ł t	1	1	!	£ £	!	1	i i	£ £	-
Permit Cond. Daily Avg.	1.0	î î		1 8	ì g	6,0-8.5	***************************************		,	 [1	1	ŧ		t I	 t	
Cooling Water	, 26.8,	\$ P	*068.3	49	} E	7,5	140	3 5	·	I I	ŧ	5,390*	1	1		I I	
Permit Cond. Daily Avg. and and	06	28,000	45,000	š P	6	5.0-9.0		· C	t t		****		1	\$	1	ı	
001 and C02	53.37	5,800	14,500	: !	£ 8	7,1-7.3	t i		!	t I	î î	I I	1	8	1	! !	
#2 Sec. Clar. (DOE)	27.04	15 3,380	64 14,400	377	 -	7.3	2,500	1,200	, 83	2,233	006,1	79	22	.03	.0.	.0.>	1.18
#7 Sec. Clar. (WEYCO)		m !	89 1	401	E p	7.5	2,500	1,200	77	2,109	1,769	48	21	;	£	ŧ	1
#1 Sec. Clar. (DOE)	26,33	11 2,420	46 10,100	406	B ž	, s	3,500	7,100	77	2,236	1,838	95	0	620.	Į,	.03	8:.:
J/Y Sump	(30,45)	191	22 5,590	390	ı	s) (*	3,500	3800	54	2.517	7,954	25	IJ	ŧ	i	ŧ	t t
Prımary Effluent	(22,92)	276 52,80u	720 22,900	560	î. B	۲۰ دی	1.700	ಜನ	780	7,503	1,138	120	25	i i	Į,	ŧ	dia sale
Primary Influent	22.92	308 58,900	1,170 224,000	1,280	£.	7,2	1,300	410	108		413			1	ş	ŧ	i t
	Flow (MGD)	BOD (mg/1) (1bs/day)	TSS (mg/l) (1bs/day)	COD (mg/l)	Fecal Coli, (#/100 mls)	pH (S.U.)	Spec. Cond. (rmhos/cm)	Color (S.U.)	Turb. (NTUs)	Tot. Solids (mg/7)	TNVS (mg/l)	TSS (mg/1)	NVSS (mg/1)	NH ₂ -N (mg/1)	NO ₂ -N (mg/1)	NO ₂ -N (mg/1)	TotP (mg/1)

*Apparent Taboratory error. **Flow meter subsequently found out of calibration; value probably too high, see Table 2.

Table 5. Sludge Metals Results.

Element	WEYCO mg/kg wet wt.	DOE mg/kg wet wt.	mg/kg dry wt.
ΑΊ	2,500		
В	3		
Ba	44		
Ca	57,000		
Cd	0.2	0.43	1.3
Co	0.6		
Cr	12	8.3	25
Cu	11	14	43
Fe	765		
Нд	0.17	0.21	0.62
K	225	ers tab	ents 193
Mg	960	Ev. en.	₩9 65a
Mn	180	. And the	Here COS
Na	2,050	to we	Wine CU1
Ni	8	20	61
Р	335	Eliz ent	
Pb	44	60	180
Sn	<7	£≪ wes	era wa
Zn	26	35	105

% Solids = 33%

[&]quot;<" = "less than"

Table 6. Permit Compliance.

	they cover types to medical and the first types of the first type of the first	001	and 002	President Constitution of the Constitution of	and profession of the state of	003	13	معتزجين سيني مسيدن برايده وإسميري منايا مسيمه مناوت		0	005	
e Charles de la Carles de La Car	DOE Results	DOE WEYCO, WEYCO. Results Longview R & D	WEYCO, R & D	Permit Daily Avg.	DOE Results	WEYCO, Longview	WEYCO, R & D	DOE WEYCO, WEYCO, Permit Results Longview R & D Daily Avg.	DOE Results	WEYCO, Longview	WEYCO, R & D	DOE WEYCO, WEYCO, Permit Results Longview R & D Daily Avg.
Flow (MGD)	53.4	53,4 (53,4) (53,4)	(53,4)	06	8,97	6 8	i i	0, -	0,348	.405	ik B	0.3
BOD ₅ (mg/1) (lbs/day)	6,220	7,120	5,800	28,000	E E	P P	## ## E	2 E	5 14,5	7 23		30 75
TSS (mg/1) (1bs/day)	12,600	12,600 18,000	14,500	45,000	20 vice 120 vice	0 F \$ \$	E #	50 E	200	7.9	\$ 8 8 8	30
рн (S.U.)	5.6-7.2	5,6-7,2 7,1-7,3 6,8-7,3	6.8-7.3	5.0-9.0	7.0-7.4	6.9	v.,	6,0-8,5	\$	č g	WG 464	
Fecal Coli. (#/100 ml)	£ .	as sa	(80 m)	47 62	48 ES	8	\$	is as	ŗ _	E 8	< 2	200
T. Chl., Res. (mg/l)	<u> </u>	fi g	E B	£3 £1	E.	E E	E F	S &	4.5	E P	8. 88	0.5-5.0
	ACC - COLUMN TO SERVICE AND SE	webstern Co. agi - Ledge etterne sterne	on a president describer. Or recoverable annual se	no al martin, su card successiva aque especialização actualções à	the state of the s			са во предоставности става става става на предостава на предостава става става става става става става става с				

"<" = "less than"

Table 7. A Summary of the Comparisons of Laboratory Results - Composite Sample, Permit Parameters.

Constituent	Location	DOE	WEYCO, Longview	WEYCO, R & D
BOD ₅ (mg/1)	Primary Influent Primary Effluent A/C Sump #1 Sec. Clar. Eff. DOE #1 Sec. Clar. Eff. WEYCO #2 Sec. Clar. Eff. DOE Sanitary Effluent	290 240 170 15 20 13 5	319 287 228 16 16 7	308 276 191 11 15 15
TSS	Primary Influent Primary Effluent A/C Sump. #1 Sec. Clar. Eff. DOE #1 Sec. Clar. Eff. WEYCO #2 Sec. Clar. Eff. DOE Filter Backwash Cooling Water Sanitary Effluent	65 58 37 27** 20 360 <1 10	1,080 71 80 50 48 31 401 7.9	1,170 120** 22** 46 48 64** 5,800* 5,390*
рН	Primary Influent Primary Effluent A/C Sump #1 Sec. Clar. Eff. DOE #1 Sec. Clar. Eff. WEYCO #2 Sec. Clar. Eff. DOE Filter Backwash Cooling Water Sanitary Effluent	9.7 9.9 4.4 7.0 7.0 7.2 7.1 7.4 6.9	9.4 9.5 4.4 7.1 7.2 7.3 6.9	7.2* 7.3* 3.8 7.3 7.1 7.3 6.8 7.5

^{*}Probable laboratory errors.
**Possible laboratory errors.
"<" = "less than"